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Abstract

The high-resolution scheme for the compressible Navier–Stokes equations developed in Ohwada and Kobayashi

[Management of discontinuous reconstruction in kinetic schemes, J. Comput. Phys. 197 (2004) 116–138] is rederived

without using any special techniques of kinetic theory. The scheme is simplified and its efficiency is improved by intro-

ducing an artificial equilibrium function. High performance of the new scheme is demonstrated in the problems of dou-

ble-Mach-reflection, forward-facing step, and shock-boundary-layer interaction. The detailed information for easy

programming is also given.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The performance of home computer was improved drastically in the last two decades. In fact, a recent

home computer can easily do the same large-scale fluid-dynamic computation as was carried out on a super

computer in a research institute 20 years ago, even while performing a web-browsing program. Although

the resources of ‘‘super computing’’ are now widely prevailing, never does it mean that the computational

fluid dynamics (CFD) became easily accessible in these 20 years, however.

The high-resolution scheme for capturing shock waves and contact discontinuities is not regarded as an

appropriate topic for undergraduate students at the present time. It is now provided as one of the advanced
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topics for graduate students or professionals in the field of aerospace engineering and its related areas. This

situation is mainly due to the depth of theory of approximate Riemann solver (see, e.g. [11]), which is pre-

requisite for the clear understanding of most of high-resolution schemes. In kinetic approach to compress-

ible flows, such as the equilibrium flux method (EFM) [10], the kinetic flux vector splitting scheme (KFVS)

[1], and the gas kinetic BGK scheme (GKB) [15], this cumbersome task even for professionals is bypassed;
the linearity of the convective term in the kinetic equation drastically simplifies the theory of characteristics.

One may think that this seemingly easy job should be compensated with the additional task of learning ad-

vanced knowledge of kinetic theory. In fact, the EFM and KFVS can be regarded as the deterministic vari-

ants of the direct simulation Monte-Carlo (DSMC) of the Boltzmann equation for the case of vanishing

mean free path and the KFVS and GKB for the compressible Navier–Stokes equations employ the second

order approximation in the Chapman–Enskog expansion. In other words, the clear understanding of ki-

netic approach seems to require the knowledge of asymptotic analysis and numerical analysis of kinetic

equations. However, the past studies on kinetic schemes, e.g. [6,8,9], imply that the derivation of kinetic
schemes for gas-dynamic equations up to the Navier–Stokes order does not require any advanced knowl-

edge of kinetic theory.

In [7], a kinetic scheme for the compressible Navier–Stokes equations, which is shock capturing and

yields a fine boundary-layer profile under a reasonable resolution, is developed. Since some techniques

of kinetic theory, such as the Chapman–Enskog expansion and the splitting algorithm for the Boltzmann

equation, are employed in the derivation, it is not readily accessible to the engineering community at large.

The objective of the present paper is to show that such high-resolution schemes are derived without using

any advanced knowledge of gas-dynamics including kinetic theory. We summarize the outcome of the re-
cent studies on kinetic schemes [7,8] as the simple derivation of high-resolution schemes for compressible

flows and demonstrate the high performance.

The organization of the paper is as follows. In Section 2, the principle of kinetic scheme is reviewed in the

framework of the approximate method for the one-dimensional compressible Euler equations. In Section 3,

a high-resolution scheme is derived as a hybrid between two kinetic schemes employing different reconstruc-

tions of fluid-dynamic variables. Section 4 is devoted to the extension and generalization of the scheme. The

hybrid scheme is extended to the case of the compressible Navier–Stokes equations and to the case of poly-

atomic gases. The scheme in [7] employs the real equilibrium function, i.e., the local Maxwellian. The gen-
eralization of the equilibrium function is also discussed there. The numerical results are presented in Section

5, where the double-Mach-reflection, forward-facing step, and shock-boundary-layer interaction, which are

typical 2D test cases in CFD, are solved with high accuracy and high efficiency. The detailed information of

the scheme for easy programming is also presented in Appendix A.
2. Principle of kinetic scheme

We review the principle of kinetic schemes for compressible flows. For the brief explanation, we consider

the one-dimensional Euler equations for ideal gases:
oh

ot
þ oUðhÞ

ox1
¼ 0; ð1Þ

h ¼ ðq; qui; q½eþ u2k=2�Þ
T
; ð2Þ

U ¼ ðqu1; qu1ui þ pd1i; qu1½eþ u2k=2� þ pu1Þ
T
; ð3Þ
where x1 is the space coordinate and t is the time; q, ui, p, and e are the density, flow velocity, pressure, and

internal energy (per unit mass) of the gas, respectively; dij is Kronecker�s delta; u2k means u21 þ u22 þ u23 (Ein-
stein�s summation convention); and the superscript T means the transpose. For ideal gases, p = RqT and
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e = CvT, where T is the temperature of the gas, R is the specific gas constant, and Cv is the isochoric specific

heat, i.e., Cv = (3 + K)R/2 for K internal degrees of freedom.

2.1. Finite volume method

Many of the existing high-resolution schemes for compressible flows are categorized into the finite vol-

ume method. In this approach for the one-dimensional case, the space region, x1, is divided into cells. Let

the domain of ith cell be the interval (xi� 1/2,xi+1/2) (i = 1, 2, 3, . . .). Integrating both sides of Eq. (1) over the

cell (xi� 1/2,xi+1/2) and the time interval (0,Dt), we have
hiðDtÞ ¼ hið0Þ � 1

Dx
½F iþ1=2 � F i�1=2�; ð4Þ
where Dx = xi+1/2 � xi� 1/2, hi(t) is the average of h(x1,t) over the ith cell, i.e.,
hiðtÞ ¼ 1

Dx

Z xiþ1=2

xi�1=2

hðx1; tÞ dx1; ð5Þ
and Fi+1/2 is the numerical flux at x1 = xi+1/2 defined by
F iþ1=2 ¼
Z Dt

0

U½hðxiþ1=2; tÞ� dt. ð6Þ
We will show three different derivations of the same formula of the numerical flux, which is second order

accurate in time.

2.2. Cauchy–Kowalevskaya procedure for analytic initial data

Evaluating the time derivative of the flux function U in Eq. (6) by using Eq. (1) (Cauchy–Kowalevskaya

procedure), we have the following formula with the second order accuracy in time:
F iþ1=2
k ¼ DtUk �

Dt2

2

oUk

ohj

oUj

ohm

ohm
ox1

; ð7Þ
where each term on the right hand side is evaluated at (x1,t) = (xi+1/2,0), the subscripts j, k, and m mean the

components of vectors, and Einstein�s summation convention is employed.
2.3. Cauchy–Kowalevskaya procedure at microscopic level

We will derive Eq. (7) by a kinetic method. Here, for simplicity, we consider the case of monatomic gases

(K = 0). We first summarize the minimum knowledge of kinetic theory which is necessary for this job.

(i) kinetic definition of fluid-dynamic variables. The fluid-dynamic variables are defined by the moments of

the distribution function of the gas molecules f, which is a function of x1, t, and the molecular velocity

n, i.e., f(x1,t,n). The conservative variables h are given by
h ¼
Z

wf dn; ð8Þ
where the vector w is defined by w ¼ ð1; ni; n2k=2Þ
T
and the domain of the integration is the whole veloc-

ity space R3 (this is applied to all the following integrals with respect to n, unless otherwise stated); the

primitive variables ~h ¼ ðq; ui; T ÞT are obtained from h.



T. Ohwada, S. Fukata / Journal of Computational Physics 211 (2006) 424–447 427
(ii) Equilibrium function. A local equilibrium state of the gas is described by the local Maxwellian, which

depends on x1 and t through the macroscopic parameters h (or ~h), i.e., g½hðx1; tÞ; n� or g½~hðx1; tÞ; n�, and
its functional form with respect to n is given by
g ¼ q

ð2pRT Þ3=2
exp � ðni � uiÞ2

2RT

" #
. ð9Þ
The local Maxwellian g satisfies
h ¼
Z

wg dn ð10Þ
and yields the flux function for the compressible Euler equations U
U ¼
Z

n1wg dn; ð11Þ
where n1 is the component of molecular velocity in the direction of x1, which is normal to the cell interface.

Hereafter, we call the function g[h(x1,t),n] the equilibrium function if it satisfies Eqs. (10) and (11). We will

explain the derivation of kinetic schemes using the properties of the equilibrium function, Eqs. (10) and

(11); the explicit functional form of the equilibrium function will not be used until the final stage (the last
part of Appendix A). The above gadgets are for the case of monatomic gases and those for polyatomic

gases will be summarized in Section 4.

Inserting Eq. (11) into Eq. (6), expanding g in the integrand around t = 0, and making use of Eq. (1) for

the evaluation of og/ot, we have the formula of the numerical flux:
F iþ1=2 ¼
Z Dt

0

Z
n1wf ðxiþ1=2; t; nÞ dn dt; ð12Þ

f ðxiþ1=2; t; nÞ ¼ g � t
og
ohk

oUk

ox1
¼ g � t

og
ohk

oUk

ohm

ohm
ox1

¼ g � t
og
ohk

Z
n1wk

og
ohm

dn

� �
ohm
ox1

; ð13Þ
where each term on the right hand side is evaluated at (x1,t) = (xi+1/2,0). It is easily verified that Fi+1/2 de-

fined by Eqs. (12) and (13) is equivalent to Eq. (7). Eq. (13) will be employed as the canonical solution in the
kinetic construction of high-resolution schemes, which are second order accurate in time. We have consid-

ered the conservative variables h as the arguments of the equilibrium function. The primitive variables ~h can
also be employed as its macroscopic parameters; Eqs. (7) and (13) are rewritten as:
F iþ1=2
k ¼ DtUk �

Dt2

2

oUk

ohj

oUj

o~hm

o~hm
ox1

; ð14Þ

f ðxiþ1=2; t; nÞ ¼ g � t
og
ohk

oUk

o~hm

o~hm
ox1

¼ g � t
og
ohk

Z
n1wk

og

o~hm
dn

� �
o~hm
ox1

. ð15Þ
2.4. Railroad method

In this section, we briefly explain a more complete theory for the construction of kinetic schemes, which
is called the railroad method [5–7]. The reader who is interested only in the explicit construction of the ki-

netic scheme can safely skip to Section 3.

In the previous subsection, we derived Eqs. (12) and (13) [and consequently Eq. (7)] by considering

the equilibrium function, the local Maxwellian, the macroscopic parameters of which satisfy Eq. (1). It
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is easily verified by the direct substitution that such a distribution function satisfies the following kinetic

equation:
of
ot

þ n1
of
ox1

¼ � og
ohk

oUk

ox1
þ n1

og
ox1

; ð16Þ
where the argument h (or ~h) of each term on the right hand side is defined by Eq. (8). Multiplying Eq. (16)

by w and integrating the results over the whole velocity space, the cell (xi� 1/2,xi+1/2), and the time interval

(0,Dt), we have Eq. (4) with Eq. (12). The right hand side of Eq. (16) vanishes after the integration with
respect to n, since �wk(og/ohj)dn = djk and �wkn1(og/ox1)dn = oUk/ox1. In this formulation, we consider

the Cauchy problem of Eq. (16) from the initial data in the form of f = g. Consequently, the distribution

function f in Eq. (12) should be the solution of the Cauchy problem. The solution is formally expressed

as the sum of the term corresponding to the initial data and the integration of the collision term, the right

hand side of Eq. (16), along the characteristics x1(s) = xi+1/2 � n1(t � s). Applying the Euler method to the

integral along the characteristics and using the Taylor expansion around (x1,t) = (xi+1/2,0), we have the

canonical solution (13) as an approximate solution with the error of O(t2).

2.5. Remarks

We have considered three derivations of Eq. (7). From the last two derivations, we obtained the canon-

ical solution for the kinetic schemes with the second order accuracy in time. From the last (third) derivation,

we got the principle of the extension to the case of the discontinuous reconstruction of the fluid-dynamic

variables, i.e., the theory of characteristics of kinetic equation. Incidentally, the last derivation reveals

the intrinsic error of the existing kinetic schemes. The contribution of the collision term of Eq. (16) to

the canonical solution is O(t), and therefore, that to the numerical flux is O(Dt2), which shows that the ki-
netic schemes employing the solution of the Cauchy problem for the collisionless Boltzmann equation from

the initial data in the form of f = g, such as EFM, are at most first order accurate in time. In [9], which inher-

its the strategy of [3], the second order accurate flux is derived from the solution of the collisionless Boltz-

mann equation by introducing a distortion in the initial data. The distortion is determined in such a way

that the resulting formula of the numerical flux agrees with Eq. (7). Contrastively, the second order accuracy

is automatically gained in the above three derivations and the extension to the higher order accurate formu-

las (third order, fourth order, etc.) can be done straightforwardly. We refer the reader to [8], where the

above three approaches are applied to the construction of high order accurate kinetic scheme for the Burnett
equations.
3. High-resolution scheme

It is well-known that the Lax–Wendroff scheme produces spurious oscillations around shock waves and

contact discontinuities. The Godunov scheme, which is the counterpart of the Lax–Wendroff scheme in the

classic CFD, employs the piecewise constant reconstruction, i.e., h(x1,0) = hi in (xi� 1/2,xi+1/2), and com-
putes the numerical fluxes by means of Riemann solver. Owing to the numerical dissipation created by

the discontinuities at cell interfaces, spurious oscillations are suppressed. However, the numerical dissipa-

tion is excessive and the numerical result is smeared even in resolved regions. Most of high-resolution

schemes employ piecewise polynomials that allow discontinuities at cell interfaces, such as MUSCL and

ENO, and the numerical fluxes are computed by means of Riemann solver. High-resolution is usually

brought by cleverly avoiding the creation of maxima and minima in the reconstruction, which is interpreted

as the control of the numerical dissipation via that of the discontinuities at cell interfaces. On the other

hand, in the viscous computation of Blasius flow, the Lax–Wendroff scheme with the additive viscous
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and heat conduction terms works quite well. Contrastively, the discontinuous reconstructions are not

advantageous in this case. Although the numerical dissipation created by the discontinuous reconstruction

is small under a reasonable resolution, however, it is not negligibly smaller than the physical viscosity,

which is very small; the boundary-layer profile is considerably poisoned by the small numerical dissipation

[15,7]. The continuous reconstruction is advantageous in the boundary-layer computation and disadvanta-
geous in the shock-wave computation and vise versa for the discontinuous reconstruction. This ‘‘antinomy’’

should be resolved in the high-resolution scheme for the compressible NS equations.

3.1. Reconstruction of fluid-dynamic variables

Before proceeding to the construction of the scheme, we prepare three reconstructions of the fluid-

dynamic variables. Recall that the domain of ith cell is the interval (xi� 1/2,xi+1/2). Let xi be the center

of gravity of ith cell, i.e., xi = (xi� 1/2 + xi+1/2)/2. Then, the first reconstruction, which will be called Recon-
struction-I hereafter, is the line graph connecting (xi,hi) (i = 1, 2, 3, . . .). The second reconstruction, which

will be called Reconstruction-II hereafter, is a piecewise linear interpolation that passes through (xi,hi) and
allows a discontinuity at each cell interface x1 = xi+1/2. The slope of h (or that of ~h) in each cell is computed

by an appropriate slope limiter. In the present paper, the van Leer limiter [16] is employed. Then, at each

cell interface x1 = xi+1/2, the reconstructed h(x1,t = 0) has two limiting values, h(xi+1/2 ±

0,t = 0). These reconstructions are schematically shown in Fig. 1 together with Reconstruction-III, which

will be introduced in the following section.

3.2. Preliminary schemes

We employ the superscript �I� to express the term approximated by Reconstruction-I. Applying Recon-

struction-I to the canonical solution (13), we have
Fig. 1.

(Sectio
f ðxiþ1=2; t; nÞ ¼ gI � t
og
ohk

oUk

ox1

� �I

¼ gI � t
og
ohk

� �I Z
n1wk

og
ohm

ohm
ox1

� �I

dn; ð17Þ
x i-1/2 x i+ 1/2

h i+ 1

h i

h i-1

The schematic figure of reconstruction: ––––––, Reconstruction-I; ––––, Reconstruction-II; and � � � � � �, Reconstruction-III

n 3.2).
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where each term on the right hand side is evaluated at (x1,t) = (xi+1/2,0). Substituting Eq. (17) into Eq. (12),

we have the numerical flux of the Lax–Wendroff scheme. Therefore, the resulting scheme is not shock cap-

turing and is excluded from the list of high-resolution schemes.

In the application of Reconstruction-II to the canonical solution (13), we take account of the direction of

characteristics of the kinetic Eq. (16). We employ the superscript �II� to express the term at (x1,t) = (xi+1/2,0)
evaluated by this approximation, e.g.
gII ¼ gðxiþ1=2 � 0; 0; nÞ ðfor n1 ? 0Þ. ð18Þ

Other terms in the canonical solution (13), i.e., og/ox1, og/oh, and oh/ox1, are also approximated in the same

way. Incidentally, Eq. (18) is interpreted physically; the molecules for n1 > 0 come from the left hand side of

the cell interface and those for n1 < 0 comes from the right hand side. The explanation based on the physical

intuition may be more understandable for the undergraduate students who are not familiar with kinetic the-

ory. This is the reason why we said that Section 2.4 can be skipped, although a more complete theory than

the Cauchy–Kowalevskaya procedure is presented there. As an extension of Eq. (13) to the case of Recon-

struction-II, we have:
f ðxiþ1=2; t; nÞ ¼ gII � t
og
ohk

� �II

DUII
k ; ð19Þ

DUII
k ¼

Z
n1wk

og
ohm

ohm
ox1

� �II

dn. ð20Þ
The DUII
k can also be computed by using the primitive variables ~h ¼ tðq; ui; T Þ:
DUII
k ¼

Z
n1wk

og

o~hm

o~hm
ox1

 !II

dn. ð21Þ
Another formula for Reconstruction-II is
f ¼ gII � t
og
ohk

oUk

ox1

� �II

; ð22Þ
which yields Scheme-B for � = 0 of [7]. From these formulas, we have shock capturing schemes; the numer-

ical flux is naturally split into two parts according to the sign of n1, i.e., the direction of characteristics of

Eq. (16). As mentioned before and shown in [7], the NS solver made by adding the viscous and heat con-

duction terms to the Euler solver for Reconstruction-II does not work in the boundary-layer computation

because of the numerical dissipation created by the discontinuity.

The third reconstruction is a hybrid of Reconstruction-I and Reconstruction-II, which inherits the fine

properties of the parents, i.e., its numerical dissipation becomes large in unresolved regions (Reconstruc-
tion-II), such as a shock layer, and small in resolved regions (Reconstruction-I), such as a boundary-layer.

The hybridization is made at the microscopic level as follows. We first compute the value of h at each cell

interface from gII. We denote the result by hIII, i.e.,
hIII ¼
Z

wgII dn. ð23Þ
Then, Reconstruction-III is made as the piecewise linear interpolation connecting (xi,hi) and (xi+1/2,hIII)
(i = 1, 2, 3, . . .). The schematic figure of Reconstruction-III is shown in Fig. 1. Employing Reconstruc-
tion-III for g and og/oh and Reconstruction-II for oh/ox1 in the canonical solution (13), we have
f ðxiþ1=2; t; nÞ ¼ gIII � t
og
ohk

� �III

DUII
k ; ð24Þ
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where
gIII ¼ gðhIII; nÞ; ð25Þ
og
ohk

� �III

¼ og
ohk

ðhIII; nÞ. ð26Þ
The DUII remains as it is in Eq. (24) in order to link the time derivative of g and the numerical dissipation

created by the discontinuity, which act in the opposite directions; the scheme becomes first order accurate in

time when the slopes at both sides are reduced to zero by the limiter. If DUII is replaced by DUI, spurious

oscillations become remarkable. The scheme for Eq. (24) is equivalent to Scheme-F for � = 0 of [7]. It works

well in the Blasius flow problem but it does not work very well in the Sod test case; small but appreciable

spurious oscillations appear around the tail of the expansion wave. Although, this scheme works in the Sjö-
green test case and the Woodward-Colella Blast-wave test case and considerable improvement over the

Lax–Wendroff scheme is confirmed in several inviscid computations, it is excluded from the list of high-res-

olution schemes.

Incidentally, Reconstruction-III was devised by Xu in the construction of his GKB scheme [14,15]. The

distribution function employed to compute the numerical flux of the GKB scheme is expressed as the inte-

gral form of the solution of Cauchy problem for the BGK equation, i.e., the sum of the term corresponding

to the discontinuous initial data and the integral of the gain term (the local Maxwellian) along the charac-

teristics. Reconstruction-III is employed in the approximation of the gain term. For s � Dt, the contribu-
tion of the gain term becomes dominant and Reconstruction-III plays the major role; the contribution of

the initial data becomes dominant for Dt � s. Precisely speaking, however, the distribution function em-

ployed in the GKB scheme is not the approximate solution of the BGK equation for discontinuous initial

data, since the Taylor expansion of the local Maxwellian around the singular point is employed formally in

the derivation; the local Maxwellian created from the BGK solution for discontinuous initial data (Recon-

struction-II) is singular around (x1,t) = (xi+1/2,0). Nevertheless, his construction is legitimated by the fact

that the distribution function so constructed coincides with the canonical solution in the case of smooth

initial data. Then, his construction of the BGK solution is interpreted as a procedure to mix Reconstruc-
tion-II and Reconstruction-III into the canonical solution. For the detailed analysis of the GKB scheme, we

refer the reader to [7], where another way of mixing, which is based on the splitting algorithm, is proposed.

In the following section, we will simply mix these reconstructions into the canonical solution without

detouring to enjoy the above-mentioned techniques.

3.3. Hybridization

In Section 3.2, we made Reconstruction-III as the hybrid between Reconstruction-I and -II. For the suc-
cessful high-resolution scheme, the hybridization at the level of numerical flux is necessary besides the

hybridization at the level of reconstruction. In [7], a high-resolution scheme was developed as a hybrid be-

tween the scheme based on Eq. (22) and that based on Eq. (24). Since the weight factors employed there

depend on t, the formula of the numerical flux is a little bit complicated. Here, we consider a simple hybrid-

ization. We apply the hybridization only to the equilibrium function g
f ðxiþ1=2; t; nÞ ¼ agII þ ð1� aÞgIII � t
og
ohk

� �III

DUII
k ; ð27Þ
where a is a positive constant and its value is determined at the beginning of each time step and for each cell

interface. The principle of the hybridization is as follows. The value of the mixing parameter a is determined

in such a way that the contribution of gII becomes dominant in unresolved regions and small in resolved

regions. So, various methods for the determination of a are considered. For example
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a ¼ 1� exp �C
jhþk � h�k j
hþk þ h�k

� �
; ð28Þ
where C is a positive constant, h�k are the limiting values of hk at the cell interface for Reconstruction-II.

The value of C may depend on the position and time. A similar method is employed in the determination
of s of the GKB scheme [15]. Incidentally, the hybridization between Eqs. (17) and (19) does not work. The

hybridization between the fortified Lax–Wendroff schemes by means of kinetic reconstructions is the key of

the present kinetic scheme.
4. Extension

Up to now, we have considered the kinetic scheme of the compressible Euler equations for monatomic
gases. In this section, we briefly explain the extensions to the cases of the compressible Navier–Stokes equa-

tions and polyatomic gases. We will also discuss the generalization of the equilibrium function.

4.1. Navier–Stokes equations

We have derived the kinetic scheme for the compressible Euler equations by using the local Maxwellian

the macroscopic parameters of which satisfy the compressible Euler equations. The extension to the case of

the compressible Navier–Stokes equations is done in the following way. We express the flux function for the
compressible Navier–Stokes equations UNS as the sum of the flux function for the compressible Euler equa-

tions U and its correction (the diffusive flux) U1, i.e.,
UNS ¼ UþU1. ð29Þ

Corresponding to the above expression, we express the distribution function that yields UNS as the sum of
the local Maxwellian and its correction f1
fNS ¼ g þ f 1. ð30Þ

Then, fNS should satisfy the relation
UNS ¼
Z

n1wf
NS dn. ð31Þ
From Eqs. (10) and (11), we notice that f1 should satisfy:
Z
wf 1 dn ¼ 0; ð32Þ

U1 ¼
Z

n1wf
1 dn. ð33Þ
In order to obtain the formula of the numerical flux, we expand fNS around t = 0
fNSðxiþ1=2; t; nÞ ¼ g þ f 1 þ t
og
ot

þ of 1

ot

� �
þOðt2Þ; ð34Þ
where each term on the right hand side is evaluated at (x1,t) = (xi+1/2,0) and the time derivatives should be

evaluated by using the compressible NS equations oh/ot + oUNS/ox1 = 0 in principle. Noting that the vis-

cosity and thermal conductivity are proportional to the mean collision time of gas molecules s, which is
smaller than or of the same order of the time step Dt in the usual CFD computation, we simplify Eq.

(34) by neglecting the terms of O(st,t2)
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fNSðxiþ1=2; t; nÞ ¼ g þ f 1 � t
og
ohk

oUk

ox1
. ð35Þ
Eq. (35) will be employed as the canonical solution for the compressible NS equations. Under the usual

situation of CFD computation, i.e., s [ Dt, Eq. (35) yields the effectively high order accurate numerical

flux, the error of which is O(sDt2,Dt3); we can safely neglect of1/ot and evaluate og/ot by using the compress-
ible Euler equations. When f1 is approximated by using Reconstruction-I, the extension of Eq. (27) to the

case of the compressible NS equations is given by
f ðxiþ1=2; t; nÞ ¼ agII þ ð1� aÞgIII � t
og
ohk

� �III

DUII
k þ ðf 1ÞI. ð36Þ
In this extension, (f1)I becomes the central finite difference approximation of DtU1 in the formula of the
numerical flux. Thus, the conventional extension of the Euler solver to the NS solver, i.e., the simple

addition of the central finite difference approximation of the viscous and heat conduction terms, is

recovered. Incidentally, in the case of the compressible NS equations derived from kinetic equations

by the Chapman–Enskog expansion, i.e., f = g + sg1 + � � �, we can employ sg1 as f1. Of course, under

the smooth reconstruction at cell interfaces, e.g. Reconstruction-I, the explicit construction of sg1 or

fictitious f1 is meaningless, since we KNOW the result of the integration of sg1 or f1 with respect to

n. The explicit functional form of sg1 or f1 becomes necessary in the case of discontinuous reconstruc-

tion of the diffusive terms. Finally, we mention that the present NS solver becomes first order accurate
in time when it solves the structures of nonweak shock waves (cf. [7]). In this case, however, the

employment of the NS equations is not appropriate and the Boltzmann equation should be used.

4.2. Polyatomic gases

The extension to the case of polyatomic gases can readily be done by assuming the equi-partition of the

internal energy into each degree of freedom. Let us consider the case for an ideal gas with K internal degrees

of freedom. We summarize the gadgets necessary for this extension below:

(i) The distribution function f has K additional arguments g1, g2, . . ., gK, which are the parameters of the

internal degrees of freedom, i.e., f(x1,t,n,g).

(ii) The macroscopic variables h are defined by
h ¼
Z Z

wf dn dg; ð37Þ
where w ¼ ð1; ni; ðn2k þ g2mÞ=2Þ
T
and the domain of the integration for n and that for g are R3 and RK,

respectively.
(iii) The local Maxwellian g is given by
g ¼ q

ð2pRT ÞðKþ3Þ=2 exp �ðni � uiÞ2 þ g2m
2RT

" #
; ð38Þ
and satisfies
h ¼
Z Z

wg dn dg ð39Þ
and
U ¼
Z Z

n1wg dn dg. ð40Þ
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4.3. Artificial equilibrium function

Up to now, we have regarded the equilibrium function as the local Maxwellian. If the local Maxwellian

(9) [or (38)] is employed, the error functions appear in the formulas of the numerical fluxes. Since the com-

putation of the error function is time consuming, simple equilibrium functions are preferable from the point
of the computational efficiency. Perthame [9] employed a simple equilibrium function with bounded sup-

port. The multidimensional version of the equilibrium function of [9] is
g ¼
q

½6RT �ð3þKÞ=2 for ðn; gÞ 2 Xðui; T Þ;
0; other;

(
ð41Þ
where X(ui,T) is the 3 + K dimensional cube defined by:
Xðui; T Þ ¼
Y3
k¼1

Ak

 !
�

YK
m¼1

Bm

 !
; ð42Þ

Ak ¼ uk �
ffiffiffiffiffiffiffiffiffi
3RT

p
< nk < uk þ

ffiffiffiffiffiffiffiffiffi
3RT

ph i
; ð43Þ

Bm ¼ �
ffiffiffiffiffiffiffiffiffi
3RT

p
< gm <

ffiffiffiffiffiffiffiffiffi
3RT

ph i
. ð44Þ
It is easily verified that the above function satisfies the properties of the equilibrium function, Eqs. (39) and

(40). This equilibrium function will be employed in Appendix A.
5. Numerical demonstration in 2D flow problems

In this section, we consider the case of a diatomic ideal gas (c = 1.4) and carry out the numerical test of

the kinetic scheme in the well-known problems of the double Mach reflection, forward-facing step, and

shock boundary layer interaction. The first two problems are for the compressible Euler solver and the third

one is for the compressible NS solver. The numerical scheme employed in these tests is 2D version of the
hybrid kinetic scheme with the artificial equilibrium function of Eq. (41). The detailed construction of

the scheme is explained in Appendix A. The explanation here employs the nondimensional variables and

the notation is summarized in Appendix A (the reference values, q*, T*, etc., are taken from the upstream

condition).
5.1. Boundary condition at a solid wall

Before going to the numerical computation, we mention the treatment of the boundary condition at
a solid wall. The numerical flux there is computed from the canonical solution (13) [or Eq. (35)]. The

values of ~h and their space derivatives at the boundary are prescribed or are computed from the data

around the boundary by appropriate approximations. In all the numerical computations below, the flux

at the solid wall is computed from the continuous approximation of the canonical solution.
5.2. Double Mach reflection of a Mach 10 shock from a wedge

This test case is a model problem of the reflection of a Mach 10 planar shock wave from a wedge. Ini-
tially, the shock makes a 60� angle with the wall located at y = 0 and 1/6 6 x and hits the wall at x = 1/6.
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For the details of the set up of the problem, we refer the reader to [13]. The uniform cell system with

Dx = Dy = 1/120 is employed and Dt/Dx is fixed to 0.012 during the computation. The hybridization param-

eter a is determined by Eq. (28) with hk = p and C = 200. No artificial viscosity is employed. Figs. 2–5 show

the snapshot of the flow field at t = 0.24. The complicated structures in the flow are well resolved. Inciden-

tally, the unit of the time employed in [13] is L/(cRT*)
1/2 and it is L/(2RT*)

1/2 in the present paper. Thus,
t = 0.24 corresponds to t � 0.2 in [13]. The efficiency of the present scheme is checked by comparing the

CPU time with that for the downloadable software VH-1 [12], which employs the Lagrangian remap ver-

sion of the Piecewise Parabolic Method (PPM) developed in [2]. Since this software is based on the direc-

tional splitting algorithm, the kinetic scheme for this algorithm is employed in the comparison. The

computational costs for these schemes are practically identical. Incidentally, we have carried out the com-

putation of the kinetic scheme that employs the local Maxwellian as the equilibrium function. The results

are practically the same as those shown in Figs. 2–5; the results for these different equilibrium functions are

almost indistinguishable in the figures. This shows that the functional form of equilibrium function is not
essential and we can cheat the real gas nature under the condition of the equivalent flux. As for the com-

putational efficiency, the employment of the artificial equilibrium function reduces the CPU time by about

40%.

5.3. A Mach 3 wind tunnel with a forward-facing step

The second numerical test deals with a Mach 3 flow in a wind tunnel with a forward-facing step. The set

up is explained elsewhere, e.g. in [13], and thus, the explanation is omitted here. The uniform cell system
with Dx = Dy = 1/160 is employed and Dt/Dx is fixed to 0.1 during the computation. The hybridization

parameter a is determined by Eq. (28) with hk = p and C = 500. Neither special technique for the region

around the corner nor artificial viscosity is employed. Figs. 6–9 show the snapshot of flow field at

t = 4.8, which corresponds to t � 4 in [13]. The structures in the flow are well resolved. In particular, the

oscillations of entropy contours are very small except around the region where the Kelvin–Helmholtz insta-

bility occurs, which is in contrast to the result of [12].

5.4. Shock boundary layer interaction

This test case deals with the interaction of an oblique shock with a laminar boundary-layer on a nonslip

and adiabatic wall. The shock makes a 32.6� angle with the wall, which is located at y = 0 and 0 6 x, and

hits the boundary layer on the wall at x = 1. The Mach number of the shock wave is equal to 2 and the

Reynolds number based on the upstream flow condition and the unit length is 2.96 · 105. The viscosity

is computed according to the Sutherland law and the Prandtl number is fixed to 0.714. Since this problem

is not sensitive to the bulk viscosity, only the results for �v ¼ 0 will be shown. The computational domain is
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Fig. 2. Double Mach reflection. 30 Contours of the density q from 1.236 to 14.94.
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Fig. 4. Double Mach reflection. 30 Contours of the pressure p from 10.3 to 549.4.
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Fig. 5. Double Mach reflection. 30 Contours of p/qc from 1.318 to 19.48.
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Fig. 6. Forward-facing step. 30 Contours of the density q from 0.183 to 4.334.
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Fig. 8. Forward-facing step. 30 Contours of the pressure p from 0.275 to 11.82.
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Fig. 9. Forward-facing step. 30 Contours of p/qc from 1.013 to 1.786.
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the rectangle of (�0.1 6 x 6 1.6) · (0 6 y 6 1) and is divided into 120 · 100 nonuniform rectangular cells

with the minimum width Dxmin = 5 · 10�4 around x = 0 and the maximum width Dxmax = 1.5 · 10�2 for x

and the minimum width Dymin = 5 · 10�4 around y = 0 and the maximum width Dymax = 1.25 · 10�2 for y.

The time step Dt is determined by Dt/Dymin = 0.4. The results of this steady boundary-value problem are
obtained after the pursuit of long time evolution from an appropriate initial condition. The value of the

hybridization parameter a is determined by Eq. (28) with hk = p and C = 10. Fig. 10 shows the pressure

field. Since the width of the cell is much larger than the shock thickness, the accurate shock structure is

not expected in the present computation. However, the present computation is carried out under the suf-

ficient resolution to capture the boundary-layer. The results of the hybrid kinetic scheme and those of the

preliminary kinetic scheme based on Reconstruction-II are compared in Figs. 11 and 12. While the differ-

ence between the result of 120 · 100 cell system and that of 240 · 200 cell system is small in the case of the

hybrid scheme, the difference is quite large in the case of the preliminary scheme. The skin friction and
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Fig. 10. Shock boundary layer interaction (120 · 100 cells). 30 Contours of p from 1 to 1.397.

y

u

0 0.01 0.02 0.03 0.04 0.05

0

0.5

1

1.5

Hybrid (120 x 100)
Hybrid (240 x 200)
Reconst. II (120 x 100)
Reconst. II (240 x 200)

Fig. 11. Shock boundary layer interaction. Comparison of u distribution along x = 1.
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Fig. 12. Shock boundary layer interaction. Comparison of T distribution along x = 1.
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Fig. 13. Shock boundary layer interaction. Distribution of skin friction coefficient at the plate surface.
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Fig. 14. Shock boundary layer interaction. Distribution of p at the plate surface.
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pressure distributions at the plate surface are shown in Figs. 13 and 14, where the fair agreement with the

experimental data [4] is confirmed. Incidentally, we have carried out the computation of the kinetic scheme

that employs the local Maxwellian as the equilibrium function. The results are practically the same as those

shown in Figs. 10–14; the results for the different equilibrium functions are almost indistinguishable in the
figures. This shows that the equivalence in the flux is essential even in the case of the NS equations. As for

the computational efficiency, the employment of the artificial equilibrium function reduces the CPU time by

about 40% as in the case of the Euler equations.
6. Concluding remarks

The efficiency of a numerical method is judged by the cost required for obtaining solutions of the same
quality and the cost is usually estimated by the CPU time, which is indeed one of the important factors

determining development speed. We should, however, recall the fact that the cost consists of various fac-

tors. In fact, the electric cost required in the computation itself is much less than the salaries paid to the

operating engineers. CFD is now used as a powerful tool of development researches in various fields of

industry and the influence of cost of CFD education on society will be rapidly increasing unless the majority

of the users are satisfied with the ‘‘black box’’. In the present study, we proposed simple derivation of
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high-resolution schemes for the compressible Euler and Navier–Stokes equations aiming to reduce the cost

of CFD education. Neither new theory nor new technique is devised in the present paper. Instead, the

railroad method (or the Cauchy–Kowalevskaya procedure), van Leer�s MUSCL reconstruction, Xu�s
hybrid reconstruction, and Perthame�s artificial equilibrium function are integrated as one of the easiest-

to-understand high-resolution schemes for compressible flows. Needless to say, the kinetic scheme is based
on kinetic theory. As we have seen, however, any special techniques in kinetic theory, such as the asymp-

totic analysis of the Boltzmann equation, which requires cumbersome calculations, are not necessary as far

as the gas-dynamic equations up to the level of the Navier–Stokes equations are concerned. Of course, the

kinetic scheme is an appropriate topic as the introduction to kinetic theory for the students who have just

completed the elementary course of gas-dynamics.
Appendix A. Kinetic scheme for 2D compressible flows

In this appendix, we consider the 2D compressible Navier–Stokes equations for ideal gases and give the

explicit formulas of the numerical flux.

A.1. Basic equation and notation

The notation that will be employed in the appendix is independent of the text (except Section 5) and is

summarized as follows. The q* and T* are the density and temperature of the gas at the reference state;

p* = Rq*T* (R is the specific gas constant per unit mass); L is the reference length; t* = L(2RT*)
�1/2 is

the reference time; Lxi is the Cartesian coordinates; t*t is the time; (2RT*)
1/2ni is the translational velocity

of the gas molecule; (2RT*)
1/2gm (m = 1,2, . . . ,K) are the parameters of K internal degrees of freedom (K = 0

for monatomic gases and K = 2 for diatomic gases); q*(2RT*)
(3+K)/2f(xi,t,fi,gm) is the distribution function

of the gas molecules; q*q, (2RT*)
1/2ui, T*T, p*p (p = qT), p*Pij, and p*(2RT*)

1/2Qi are the density, flow veloc-

ity, temperature, pressure, stress tensor, and heat flow vector of the gas, respectively; c = Cp/Cv = 1 + R/Cv

and Cv = (3 + K)R/2; l* is the viscosity at the reference state, l	�l is the viscosity, and l	�v is the bulk vis-

cosity; Re ¼ q	U 	Ll�1
	 is the Reynolds number, where U* is the reference speed of the flow (note that the

flow velocity and the molecular velocity are not nondimensionalized by U*), Ma = U*(cRT*)
�1/2 is the

Mach number, Pr ¼ Cpl	�lj
�1 is the Prandtl number, where j is the thermal conductivity of the gas.

The nondimensional compressible Navier–Stokes equations for ideal gases are written as:
o

ot

q

qui
q½u2k þ T =ðc� 1Þ�

0
B@

1
CAþ o

oxj

quj
quiuj þ P ij=2

quj½u2k þ T=ðc� 1Þ� þ Pkjuk þ Qj

0
B@

1
CA ¼ 0; ðA:1Þ

P ij ¼ pdij �
ð2cÞ1=2Ma

Re
�l

oui
oxj

þ ouj
oxi

� 2

3

ouk
oxk

dij

� �
þ �v

ouk
oxk

dij

� �
; ðA:2Þ

Qj ¼ � c
c� 1

ðc=2Þ1=2Ma
PrRe

�l
oT
oxj

. ðA:3Þ
From now on, we consider the case where the physical quantities are independent of x3 and u3 = 0. We will

use x, y, u, and v instead of x1, x2, u1, and u2, respectively, i.e., x = x1, y = x2, u = u1, and v = u2. Then, the

NS equations are rewritten as
oh

ot
þ oUNS

ox
þ oWNS

oy
¼ 0; ðA:4Þ
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where:
h ¼ ðq; qu; qv; q½u2 þ v2 þ T=ðc� 1Þ�ÞT; ðA:5Þ
UNS ¼ UþU1; WNS ¼ WþW1; ðA:6Þ
U ¼ ðqu; qu2 þ p=2; quv; qu½u2 þ v2 þ T=ðc� 1Þ� þ puÞT; ðA:7Þ
W ¼ ðqv; quv; qv2 þ p=2; qv½u2 þ v2 þ T=ðc� 1Þ� þ pvÞT; ðA:8Þ
U1 ¼ ð0; P 11=2; P 21=2; P 11uþ P 21vþ Q1Þ

T
; ðA:9Þ

W1 ¼ ð0; P 12=2; P 22=2; P 12uþ P 22vþ Q2Þ
T
; ðA:10Þ

P 11 ¼ �
ffiffiffiffiffi
2c

p
Ma

Re
�l

4

3

ou
ox

� 2

3

ov
oy

� �
þ �v

ou
ox

þ ov
oy

� �� �
; ðA:11Þ

P 12 ¼ P 21 ¼ �
ffiffiffiffiffi
2c

p
Ma

Re
�l

ou
oy

þ ov
ox

� �
; ðA:12Þ

P 22 ¼ �
ffiffiffiffiffi
2c

p
Ma

Re
�l � 2

3

ou
ox

þ 4

3

ov
oy

� �
þ �v

ou
ox

þ ov
oy
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; ðA:13Þ

ðQ1;Q2Þ ¼ � c3=2�lMaffiffiffi
2

p
ðc� 1ÞRePr

oT
ox

;
oT
oy

� �
. ðA:14Þ
The bulk viscosity is zero for monatomic gases (�v ¼ 0 for K = 0) but it is generally not for polyatomic gases.

A.2. Finite volume method

We employ rectangular cells in xy plane. Let the cell (i,j) be the rectangle [xi� 1/2 < x < xi+1/2] · [yj� 1/2

< y < yj+1/2] and let hij(t) be the average of h(x,y,t) over the cell (i,j), which represents the value of h at the

center of gravity of the cell (xi,yj). Then, the integral form of Eq. (A.4) is given by
hijðDtÞ ¼ hijð0Þ � 1

Dx
ðF iþ1=2;j � F

i�1=2;jÞ � 1

Dy
ðG i;jþ1=2 � G

i;j�1=2Þ; ðA:15Þ
where:
F
iþ1=2;j ¼

Z Dt

0

ðUþU1Þðxiþ1=2; yj; tÞ dt; ðA:16Þ

G
i;jþ1=2 ¼

Z Dt

0

ðWþW1Þðxi; yjþ1=2; tÞ dt; ðA:17Þ
Dx = xi+1/2 � xi� 1/2 and Dy = yj+1/2 � yj� 1/2. As mentioned in Section 4.1, high order accuracy is not

spoiled even when the first order accurate integration formula is applied to U1 and W1, i.e.:
F
iþ1=2;j ¼ F iþ1=2;j þ DtU1ðxiþ1=2; yj; 0Þ; ðA:18Þ

G
i;jþ1=2 ¼ G i;jþ1=2 þ DtW1ðxi; yjþ1=2; 0Þ; ðA:19Þ

F iþ1=2;j ¼
Z Dt

0

Uðxiþ1=2; yj; tÞ dt; ðA:20Þ

G i;jþ1=2 ¼
Z Dt

0

Wðxi; yjþ1=2; tÞ dt; ðA:21Þ
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which is easily seen from that fact U1 and W1 are proportional to the ratio Ma/Re � Kn (Kn: the Knudsen

number) and the time step Dt satisfies Kn [ Dt under the usual gas-dynamic computation. As stated in Sec-

tion 4.1, the approximation of f1 by Reconstruction-I is equivalent to the central finite difference approx-

imation of U1 and W1. Thus, in the following section, we will consider only the numerical fluxes for the

Euler equations.
A.3. 2D canonical solution for the Euler equations

The nondimensional conservative variables h = (q,qu,qv,(3 + K)qT/2 + q[u2 + v2])T are defined by the

moments of f
h ¼
Z Z

wf dn dg; ðA:22Þ
where w ¼ ð1; n1; n2; n21 þ n22 þ n23 þ g21 þ � � � þ g2KÞ
T
and the domain of the integration with respect to n and

that with respect to g are R3 and RK, respectively. In order to compute the numerical flux for the compress-

ible Euler equations, the equilibrium function g(h,n,g) is introduced. The equilibrium function g must sat-

isfy the conditions:
h ¼
Z Z

wg dn dg; ðA:23Þ

U ¼
Z Z

n1wg dn dg; W ¼
Z Z

n2wg dn dg. ðA:24Þ
The nondimensional local Maxwellian
g ¼ q

ðpT Þð3þKÞ=2 exp �ðn1 � uÞ2 þ ðn2 � vÞ2 þ g2m
T

" #
ðA:25Þ
and the nondimensional version of the artificial equilibrium function in Section 4.3:
g ¼
q

½6T �ð3þKÞ=2 for ðn; gÞ 2 Xðu; v; T Þ;
0; other;

(
ðA:26Þ

X u; v; Tð Þ ¼
Y3
i¼1

Ai

 !
�

YK
m¼1

Bm

 !
; ðA:27Þ

A1 ¼ u�
ffiffiffiffiffiffi
3T
2

r
< n1 < uþ

ffiffiffiffiffiffi
3T
2

r" #
; A2 ¼ v�

ffiffiffiffiffiffi
3T
2

r
< n2 < vþ

ffiffiffiffiffiffi
3T
2

r" #
;

A3 ¼ �
ffiffiffiffiffiffi
3T
2

r
< n3 <

ffiffiffiffiffiffi
3T
2

r" #
; Bm ¼ �

ffiffiffiffiffiffi
3T
2

r
< gm <

ffiffiffiffiffiffi
3T
2

r" #
ðm ¼ 1; 2; . . . ;KÞ; ðA:28Þ
satisfy the above conditions.

The numerical fluxes for the compressible Euler equations are computed from g whose macroscopic

parameters h satisfy
oh

ot
þ oU

ox
þ oW

oy
¼ 0. ðA:29Þ
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Then, the numerical fluxes Fi+1/2,j and Gi,j+1/2 are formally written as:
F iþ1=2;j ¼
Z Dt

0

Z Z
n1wfcðxiþ1=2; yj; t; n; gÞ dn dg dt; ðA:30Þ

G i;jþ1=2 ¼
Z Dt

0

Z Z
n2wfcðxi; yjþ1=2; t; n; gÞ dn dg dt; ðA:31Þ
where fc is the 2D canonical solution defined by:
fc ¼ g � t
og
ohk

ðDUk þ DWkÞ; ðA:32Þ

DUk ¼
Z Z

n1wk

og

o~hm

o~hm
ox

dn dg; ðA:33Þ

DWk ¼
Z Z

n2wk

og

o~hm

o~hm
oy

dn dg. ðA:34Þ
Each term of the canonical solution is evaluated at (x,y,t) = (xi+1/2,yj,0) for Fi+1/2,j and (x,y,t) = (xi,yj+1/2,0)
for Gi,j+1/2.
A.4. Data construction

We summarize the construction of the necessary data for the computation of the numerical flux. Here,

for simplicity, we consider the case of uniform cell systems. The extension to nonuniform case can be done

by minor modification, and thus, it is omitted here.

From the data of the conservative variables hij, the corresponding values of the primitive variable
~h¼tðq; u; v; T Þ, i.e., ~hij, are immediately obtained. The numerical fluxes Fi+1/2,j and U1 are computed from

the values of the primitive variables and their spatial derivatives at (x,y) = (xi+1/2,yj). The values of
~h and o~h=ob ðb ¼ x; yÞ employed in the computation of U1 are obtained as follows. ~h and o~h=ox are com-

puted from the data ~h
ij
and ~h

iþ1;j
, and o~h=oy is computed from the data ~h

iþ1=2;j�1
and ~h

iþ1=2;jþ1
by means of

the linear interpolation. The values employed in the computation of Fi+1/2,j are obtained as follows.

~h and o~h=ob at (x,y) = (xi+1/2 ± 0,yj), which will be denoted by ~h
iþ1=2;j

� and ðob~hÞiþ1=2;j
� , respectively, are

computed by means of the van Leer limiter (the other limiters can be employed); ~h
iþ1=2;j

þ and ðox~hÞiþ1=2;j
þ

are computed from ~h
i;j
; ~h

iþ1;j
and ~h

iþ2;j
, and ~h

iþ1=2;j

� and ðox~hÞiþ1=2;j
� are done from

~h
i�1;j

; ~h
ij
and ~h

iþ1;j
; ðoy~hÞiþ1=2;j

� is computed from ~h
iþ1=2�1=2;j�1

; ~h
iþ1=2�1=2;j

; and ~h
iþ1=2�1=2;jþ1

. The data neces-

sary for the computation of Gi,j+1/2 and W1 are defined and are computed in the similar way (exchange

the roles of x and y), and thus, the explanation is omitted.
A.5. Formulas for Fi + 1/2,j

We give the formulas for Fi+1/2,j below; the formulas for Gi,j+1/2 are obtained by the simple modification

of those for Fi+1/2,j.

The hybrid version of the 2D canonical solution (A.32) is
fc ¼ agII þ ð1� aÞgIII � t
og
ohk

� �III

ðDUII
k þ DWII

k Þ; ðA:35Þ
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DUII
k ¼

Z Z
n1wk

og

o~hm

o~hm
ox

 !II

dn dg; ðA:36Þ

DWII
k ¼

Z Z
n2wk

og

o~hm

o~hm
oy

 !II

dn dg; ðA:37Þ
where each term is evaluated at (x,y,t) = (xi+1/2,yj,0). We introduce the functional defined by
F½b� ¼
Z Z

n1wb dn dg. ðA:38Þ
Then, Fi+1/2,j is given by
F iþ1=2;j ¼ DtðaF½gII� þ ð1� aÞF½gIII�Þ � Dt2

2
F

og
ohk

� �III
" #

ðDUII
k þ DWII

k Þ. ðA:39Þ
We will show the explicit formulas of the functionals in Eq. (A.39) for the case of the artificial equilibrium

function, Eq. (A.26), with K = 2, i.e., h =t (q,qu,qv, q(u2 + v2 + 5T/2)). For the concise expression of the for-

mulas, we introduce the following functions and abbreviation:
HðsÞ ¼ jsj þ s
2

; KðsÞ ¼ s� jsj
2

. ðA:40Þ

SðsÞ ¼
1 s > 0

0 s 6 0

�
; W ðsÞ ¼

1 s < 0

0 s P 0

�
; ðA:41Þ

~h� ¼ ~h
iþ1=2;j

� ; ob~h� ¼ ðo~h=obÞiþ1=2;j
� ; ðA:42Þ

a� ¼ Hðu� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3T�=2

p
Þ; b� ¼ Kðuþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tþ=2

p
Þ; ðA:43Þ

c� ¼ q�ffiffiffiffiffiffiffiffiffi
6T�

p ; d� ¼ 1ffiffiffiffiffiffiffiffiffi
6T�

p ; e� ¼ 1

4T�
; m� ¼ T� þ v2�

2
; ðA:44Þ

q� ¼ v2� þ T�

2
; r� ¼ v3� þ 3v�T�; ðA:45Þ

f� ¼ Sðu� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3T�=2

p
Þ � Sðu� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3T�=2

p
Þ;

x� ¼ W ðuþ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tþ=2

p
Þ � W ðuþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tþ=2

p
Þ; ðA:46Þ

An
� ¼ ðaþÞn � ða�Þn; Bn

� ¼ ðbþÞn � ðb�Þn. ðA:47Þ
Then, hIII are given by:
hIII1 ¼ c�A
1
� þ cþB1

�; ðA:48Þ

hIII2 ¼ 1

2
½c�A2

� þ cþB2
��; ðA:49Þ

hIII3 ¼ c�v�A
1
� þ cþvþB1

�; ðA:50Þ
hIII4 ¼ c�ðA3

�=3þ 2m�A
1
�Þ þ cþðB3

�=3þ 2mþB1
�Þ; ðA:51Þ
and qIII, uIII, vIII, and TIII are immediately computed from the values of hIIIk ðk ¼ 1; 2; 3; 4Þ. Hereafter, we

will omit the superscript III from hIII, i.e., qIII ! q, uIII ! u, and so on. Then, F½gIII� is given by
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F½gIII� ¼

qu

q½u2 þ T=2�
quv

qu½u2 þ v2 þ 7T =2�

0
BBB@

1
CCCA ðA:52Þ
and F½ðog=ohkÞIII� is given by
Fi
og
ohk

� �III
" #

¼ RijHjk; ðA:53Þ
where:
Rij ¼
o

o~hj

Z
n1wig dn dg; ðA:54Þ

Hjk ¼
o~hj
ohk

ðA:55Þ
and the matrix representation of Rij and Hjk is:
R ¼

u q 0 0

u2 þ T
2

2qu 0 q
2

uv qv qu 0

u u2 þ v2 þ 7T
2

� �
q 3u2 þ v2 þ 7T

2

� �
2quv 7qu

2

0
BBB@

1
CCCA; ðA:56Þ

H ¼

1 0 0 0

� u
q

1
q 0 0

� v
q 0 1

q 0

�5Tþ2ðu2þv2Þ
5q � 4u

5q � 4v
5q

2
5q

0
BBBBB@

1
CCCCCA. ðA:57Þ
The numerical flux F½gII� is given by:
F1½gII� ¼ ðc�=2ÞA2
� þ ðcþ=2ÞB2

�; ðA:58Þ
F2½gII� ¼ ðc�=3ÞA3

� þ ðcþ=3ÞB3
�; ðA:59Þ

F3½gII� ¼ ðc�v�=2ÞA2
� þ ðcþvþ=2ÞB2

�; ðA:60Þ
F4½gII� ¼ c�ðA4

�=4þ m�A
2
�Þ þ cþðB4

�=4þ mþB2
�Þ. ðA:61Þ
DUII and DWII are given by:
DUII ¼ Rþox~h� þR�ox~hþ; ðA:62Þ
DWII ¼ Bþoy~h� þB�oy~hþ; ðA:63Þ
where:
R�
ij ¼

o

o~hj

Z Z
n1?0

win1g dn dg; ðA:64Þ

B�
ij ¼

o

o~hj

Z Z
n1?0

win2g dn dg; ðA:65Þ
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Rþ
11 ¼

d�A
2
�

2
; Rþ

12 ¼ c�A
1
�; Rþ

13 ¼ 0; Rþ
14 ¼ e�ðq�A

1
þ � c�A

2
�Þ; Rþ

21 ¼
d�A

3
�

3
;

Rþ
22 ¼ c�A

2
�; Rþ

23 ¼ 0; Rþ
24 ¼ q�e�A

2
þ � c�A

3
�

6T�
; Rþ

31 ¼
v�d�A

2
�

2
; Rþ

32 ¼ v�R
þ
12;

Rþ
33 ¼

Rþ
22

2
; Rþ

34 ¼ v�R
þ
14; Rþ

41 ¼ d�
A4
�
4

þ m�A
2
�

� �
; Rþ

42 ¼ c�ðA3
� þ 2m�A

1
�Þ;

Rþ
43 ¼ v�R

þ
22; Rþ

44 ¼ � c�e�A
4
�

2
þ q�e�A

3
þ þ c�e�ð2T� � v2�ÞA2

� þ
q�m�A

1
þ

2T�
; ðA:66Þ

R�
11 ¼

dþB2
�

2
; R�

12 ¼ cþB1
�; R�

13 ¼ 0; R�
14 ¼ eþðqþB

1
þ � cþB2

�Þ; R�
21 ¼

dþB3
�

3
;

R�
22 ¼ cþB2

�; R�
23 ¼ 0; R�

24 ¼ qþeþB
2
þ � cþB3

�
6Tþ

; R�
31 ¼

vþdþB2
�

2
; R�

32 ¼ vþR
�
12;

R�
33 ¼

R�
22

2
; R�

34 ¼ vþR
�
14; R�

41 ¼ dþ
B4
�
4

þ mþB2
�

� �
; R�

42 ¼ cþðB3
� þ 2mþB1

�Þ;

R�
43 ¼ vþR

�
22; R�

44 ¼ � cþeþB4
�

2
þ qþeþB

3
þ þ cþeþð2Tþ � v2þÞB2

� þ qþmþB1
þ

2Tþ
; ðA:67Þ

Bþ
11 ¼ d�v�A

1
�; Bþ

12 ¼ c�v�f�; Bþ
13 ¼ c�A

1
�; Bþ

14 ¼ e�v�ðq�fþ � 2c�A
1
�Þ;

Bþ
21 ¼

d�v�A
2
�

2
; Bþ

22 ¼ c�v�A
1
�; Bþ

23 ¼
c�A

2
�

2
; Bþ

24 ¼ v�e�ðq�A
1
þ � c�A

2
�Þ;

Bþ
31 ¼ d�q�A

1
�; Bþ

32 ¼ c�q�f�; Bþ
33 ¼ 2v�c�A

1
�; Bþ

34 ¼ e�½ðT� � 2v2�Þc�A1
� þ q�q�fþ�;

Bþ
41 ¼ d� r�A

1
� þ v�A

3
�

3

� �
; Bþ

42 ¼ c�ðr�f� þ v�A
2
�Þ; Bþ

43 ¼ c� 3ðT� þ v2�ÞA1
� þ A3

�
3

� �
;

Bþ
44 ¼ � v�c�A

3
�

6T�
þ q�v�e�A

2
þ þ 2c�v�e�ð3T� � v2�ÞA1

� þ e�q�r�fþ; ðA:68Þ

B�
11 ¼ dþvþB1

�; B�
12 ¼ cþvþx�; B�

13 ¼ cþB1
�; B�

14 ¼ eþvþðqþxþ � 2cþB1
�Þ;

B�
21 ¼

dþvþB2
�

2
; B�

22 ¼ cþvþB1
�; B�

23 ¼
cþB2

�
2

; B�
24 ¼ vþeþðqþB

1
þ � cþB2

�Þ;

B�
31 ¼ dþqþB

1
�; B�

32 ¼ cþqþx�; B�
33 ¼ 2vþcþB1

�; B�
34 ¼ eþ½ðTþ � 2v2þÞcþB1

� þ qþqþxþ�;

B�
41 ¼ dþ rþB1

� þ vþB3
�

3

� �
; B�

42 ¼ cþðrþx� þ vþB2
�Þ; B�

43 ¼ cþ 3ðTþ þ v2þÞB1
� þ B3

�
3

� �
;

B�
44 ¼ � vþcþB3

�
6Tþ

þ qþvþeþB
2
þ þ 2cþvþeþð3Tþ � v2þÞB1

� þ eþqþrþxþ. ðA:69Þ
The formulas for Fi+1/2,j are now completed. The formulas for Gi,j+1/2 can easily be obtained from the

above formulas by the following manipulation: (i) exchange x and y; (ii) exchange u and v; (iii) exchange

the second component of Fi+1/2,j (the momentum flux in the x-direction) and the third component (the

momentum flux in the y-direction).
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